
Amyuni PDF Creator for ActiveX
For PDF and XPS

Version 6.5 Professional

Quick Start Guide for Developers

Updated 17 June 2021

AMYUNI Consultants – AMYUNI Technologies

www.amyuni.com

Contents

Legal Information..1

Acknowledgments ...1

Description of the Modules ..2

PDFCreactiveX.dll .. 2

acPdfCrDb.dll... 2

acPDFCrExt.dll.. 2

xmllite.dll ... 2

PDFCreactiveDoc.exe.. 2

General Operation...4

Inserting the PDF Creator Control into a Project ..5

Adding the control to the Form Designer... 5

Using the PDF Creator as a dll in .NET... 6

C# Sample... 6

Using the PDF Creator in a C++ environment ..7

Setting the Licensing Information ...7

C++ Sample ... 7

C# Sample... 7

Using the PDF Creator Control ...8

Properties... 8

C++ Sample ... 8

C# Sample... 9

Methods ...11

Return values..11

Links to Support and Documentation: .. 12

Online Documentation: ..12

Frequently Asked Questions:..12

Technical Notes: ..12

User forum:..12

Posting questions to our technical support staff: ..12

Page | 1

Legal Information

Information in this document is subject to change without notice and does not represent a

commitment on the part of AMYUNI. The software described in this document is provided

under a license agreement or nondisclosure agreement. The software may be used or copied

only in accordance with the terms of the agreement. It is against the law to copy the software

on any medium except as specifically allowed in the license or nondisclosure agreement.

The licensee may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or information storage and retrieval systems, for any

purpose other than the licensee’s personal use, without express written permission of

AMYUNI.

Copyright 2001-2020, AMYUNI Consultants – AMYUNI Technologies. All rights reserved.

Amyuni and the Amyuni logo are trademarks of Amyuni Technologies Inc.

Microsoft, the Microsoft logo, Microsoft Windows, Microsoft Windows NT and their logos

are trademarks of Microsoft Corporation.

All other trademarks are the property of their respective owners.

PDFCreactiveDoc.exe is provided as a sample application for Developers, it cannot be

distributed with the Developers' application. The source-code for this executable can be

requested by contacting support@amyuni.com

Acknowledgments

This software uses the deflate algorithm developed by Jean-loup Gailly (jloup@gzip.org) and

Mark Adler (madler@alumni.caltech.edu). This software is also based in part on the work

of the Independent JPEG Group and on parts of the FreeType library.

Page | 2

Description of the Modules

The PDF Creator product is composed of five modules that can be integrated and distributed

under the developer license agreement.

PDFCreactiveX.dll

This is the main PDF ActiveX control that provides viewing, editing, and printing of PDF

documents. This DLL should be registered on the client system.

acPdfCrDb.dll

This DLL handles the interface with the database and should be registered on the client

system. It is an optional DLL required only when using the default database interface

provided with the PDF control.

acPDFCrExt.dll

This is the “extensions” DLL control and should be registered on the client system. It contains

additional controls such as the Bookmarks tree control, data formatting control, and the

default properties dialog box. This DLL is not required when not using these additional

controls.

xmllite.dll

This module contains the XML parser needed to process XPS documents. This module is

needed only if XPS support is required.

PDFCreactiveDoc.exe

This is a complete PDF viewing/editing application built using the previous modules. This

application can be used for testing purposes by the developers or as a basis for providing a

custom user interface around the PDF ActiveX control. The source-code for this executable

is provided, but only the executable and not the source-code can be distributed.

Note that if all the files are copied to the same directory, PDFCreactiveDoc.exe will register

all DLLs every time it is launched, so there is no need to manually register each DLL

separately.

Administrative privileges are required under Windows Vista, Windows 7, Windows 8,

Windows 8.1 and Windows 10 in order to register ActiveX components on the end-user

systems. Registered DLLs are also shared among installed applications which can create some

version conflicts. In order to avoid registration and DLL conflicts, an alternative method for

using the PDF Creator ActiveX controls can be used. This method is described in this forum:

https://www.amyuni.com/forum/viewtopic.php?f=13&t=2438.

Page | 3

Windows 98/Me
To work under Windows 98/Me, version 2 and above of the Amyuni PDF Creator
requires the Microsoft Unicode Layer for Windows 98/Me. This is a DLL named
unicows.dll that can be obtained from:
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/psdkredist.ht
m

Page | 4

General Operation

The Amyuni PDF Creator was designed for two main purposes:

 Viewing, editing and printing PDF documents.

 Creating reports, forms, and general documents directly in PDF format.

The ActiveX controls that are part of the PDF Creator can be integrated into most

development environments to provide the final user with advanced PDF document

management capabilities.

The PDF Creator control can be in one of four modes:

 Design mode.

 Run or Compiled mode.

 Annotation mode.

 Print preview mode.

When a blank document is first created, the control is in design mode. The user or developer

can add objects to the document, delete objects, modify object properties, and do all editing

operations allowed by the PDF Creator control.

When an existing PDF document is opened, two things can happen:

1. The PDF document was generated by the PDF Creator and contains all design

information generated by the control. In this case, the document is opened in the

same state as when it was saved, i.e., Design, Run, Annotate, or PrintPreview

modes.

2. The PDF document was generated by another tool such as the Amyuni PDF

Converter or other PDF generation tools. In this case, the document is opened

immediately in Run mode. The document can only be read or printed and if the user

has enough rights on the document, the user can switch the document to Annotation

or Design Mode, and Edit it using the PDF Creator interface.

The documents created by the PDF Creator can contain fields with formulas or data coming

from a database. Compiling the document instructs the PDF Creator to compute those

formulas and fetch information from the database. Once compiled, the document switches to

Run mode and only the fields or objects defined as Editable can be modified in Run mode.

In Annotation mode, the contents of the original document cannot be modified; the user can

only add or modify PDF annotations such as Text, Line, Highlighter, or Sticky note

annotations.

Page | 5

Inserting the PDF Creator Control into a Project

Adding the control to the Form Designer

This is specific to each development environment, but the procedure is very similar in all

cases. The PDF Creator component should be added to an existing project by using the Form

Designer’s toolbox Add Components context menu item (Choose Items in VS2017) dialog

box as follows:

Right-click on the toolbox in the form designer and select Choose Items:

Figure 1: Choose Toolbox Items

The control shows in the list of components as “Amyuni PDFCreactiveX Component”. Once

inserted into the project, the component appears in the components toolbar and can be inserted

on a form.

Page | 6

Inserting the control in Visual Studio 2005-2008
When the developer wants to insert the control in Visual Studio 2005, he must
first add the OLE Automation COM reference to the project. To do this, Right-
click References in the Solution Explorer and choose Add... from the popup
menu. A dialog box will show up. Go to the page on that dialog that is labeled
“COM” and from the list of COM type libraries on that page check the OLE
Automation library and hit OK. Now, the component can be dragged from the
toolbox onto the form without error.
The reason behind this procedure is that Visual Studio 2005 unlike its predecessor
VS2003, does not automatically add the necessary and needed COM reference to
the OLE Automation type library - stdole.tlb or stdole2.tlb.

Using the PDF Creator as a dll in .NET

To use the Amyuni PDF Creator library as a dll, without adding the ActiveX control to your

project, you need to generate the type library and ActiveX control wrappers for it and add

these to your references by:

 Start the visual studio command prompt by navigating to:

Start Menu / Programs / Visual Studio 2019/ Visual Studio Tools.

 Starting the application Developer Command Prompt for VS2019 as administrator.

Change to the folder where the PDF Creator library was installed and run the

aximp command on it:

Figure 2: Using the aximp tool.

Next go to your Visual Studio project’s References folder and add the two dlls generated

above by browsing to their location.

To use the library through the COM IDispatch interface, use the ProgID
“PDFCreactiveX.PDFCreactiveX.6.5”

C# Sample

This is a sample showing how to create a simple PDF document from a .NET application:

Page | 7

PDFCreactiveXClass pdf = new PDFCreactiveXClass();
// activate the control before doing any operation on it
pdf.SetLicenseKey("Amyuni", "07EFC…F198");
// create a static text object
pdf.CreateObject(ObjectTypeConstants.acObjectTypeText,"HelloText");
acObject helloText = pdf.GetObjectByName("HelloText");
helloText["Text"] = "Hello World!";
// set the position and size of the object
helloText["Top"] = 200;
helloText["Left"] = 200;
helloText["Right"] = 1000;
helloText["Bottom"] = 400;
// save the resulting PDF
pdf.Save("HelloWorld.pdf", FileSaveOptionConstants.acFileSaveView);

Using the PDF Creator in a C++ environment

Please refer to the online documentation for related samples at:

https://www.amyuni.com/WebHelp/Developer_Documentation.htm

Setting the Licensing Information

Before any operation can be done on the PDF Creator control, the control needs to be

activated using the SetLicenseKey method as shown below.

C++ Sample
BOOL CSampleCodeCPPDlg::OnInitDialog()
{

CDialog::OnInitDialog();

if (FAILED(hr = pdf->SetLicenseKey(_bstr_t("Amyuni"),

_bstr_t("07…84"))))
{

// code that will be entered if hr is a failure code and if
// raw_interfaces_only is used in the #import directive
s.Format(_T("\nhr = 0x%x; Failed to set the license key\n"), hr

);
AfxMessageBox(s);
return FALSE;

}
return TRUE;

}

C# Sample

This is a sample showing the initialization method in the Form_Load event handler of a

typical C# windows application:

private void Form1_Load(object sender, EventArgs e)
{

pdf.SetLicenseKey("Amyuni Tech", "07EFCDA...4FE");
}

Page | 8

Using the PDF Creator Control

Properties

The properties of the PDF control allow the user to change different aspects of its behavior.

For a complete list of creator control properties, please refer to the links provided at the end

of this document.

Properties whose values are simple data-types

These could be strings, integers, or floating point values. Below is a small example that hides

the status bar, and changes the look of the rulers on the control.

In C++, Boolean properties are actually integers. If you are programming in
.NET, an integer value needs to be used and a direct Boolean will cause a compile
error.

C++ Sample

This is a sample showing the initialization method in a typical MFC dialog application:

void CMFCDialogAppDlg::SetInitialLook()
{

CWnd *pdfControl = GetDlgItem(IDC_PDFCREACTIVEX1);
ASSERT(pdfControl);
LPUNKNOWN lpUnknown = pdfControl->GetControlUnknown();
ASSERT(lpUnknown);
IPDFCreactiveXPtr pdf = lpUnknown;
// Remove the status bar
pdf->StatusBar = false;

//Set the background color of the ruler.
//Blue component to 155
//Green component to 128
//Red component to 64
pdf->RulerBackColor = (255 << 16) | (128 << 8) | 64;
// make the ruler a bit smaller than the default size of 30
pdf->RulerSize = 20;

}

Page | 9

C# Sample

This is a sample showing the initialization method in a typical .NET application:

private void Form1_Load(object sender, EventArgs e)
{

// Remove the status bar
pdf.StatusBar = 0;
/*
Set the background color of the ruler.
Blue component to 155
Green component to 128
Red component to 64
*/
pdf.RulerBackColor = (255 << 16) | (128 << 8) | 64;

// make the ruler a bit smaller than the default size of 30
pdf.RulerSize = 20;

}

Properties that have many possible, predefined values

These are of two types:

1. Some have predefined constant names that represent the possible values. The attribute

ReportState is an example of these. In this case, either the enumeration’s literal name

can be used or the numerical value. In this case, the property type is a name, and

both the Name and Value column headers are in italics.

Property Descritption Type Default Value

ReportState Current state for document or report ReportStateConstants acReportStateRun

ReportStateConstants
Name Description Value

acReportStateRun Document in Run mode 0

acReportStateDesign Document in Design mode 1

acReportStateLoading Document is being loaded from file 2

acReportStatePrintPreview Document in PrintPreview mode 3

acReportStateAnnotate Document in annotation mode 4
Example usage:

C++
pdf->ReportState = acReportStateRun;
pdf->PutReportState(acReportStateRun);
pdf->put_ReportState(acReportStateRun);
pdf->put_ReportState(0);

C#
pdf.ReportState = ACPDFCREACTIVEX.ReportStateConstants.acReportStateRun;

Page | 10

2. Some do not have predefined names, and the numerical values must be used, like the

Duplex property. In this case the property type is an integer only the Value column

header is in italics.

Property Descritption Type Default Value

Duplex Activate duplex printing of document Integer 0

Duplex Options (value needs to be entered in code, since no enumeration is defined)

Name Description Value
Printer default Printer default 0

No duplex No duplex 1

Vertical duplex Vertical duplex 2

Horizontal duplex Horizontal duplex 3
C++
pdf->Duplex = 0;
C#
pdf.Duplex = 0;

C# Example on using the TemplateMode property:

The control supports the use of two documents simultaneously:

 A passive document that acts as a background (the template document).

 A document in the foreground where all the editing takes place.

This property is used to load a document that will be used as the passive background

document. To load a background document, do the following steps:

1. Set the TemplateMode attribute to the value one "1".

2. Load a background document like you would load any other document.

3. After loading, the value of TemplateMode will be automatically reset to zero "0", a

foreground "active" document can be loaded and manipulated normally.

If the template document has a smaller number of pages than the foreground document, the

template document will be repeated as needed, depending on the value of TemplateRepeat.

Page | 11

axPDFCreactiveX1.TemplateMode = 1;
// open a PDF file as the background, or template, document.
axPDFCreactiveX1.Open("Background.pdf", "");
// create a text object inthe active or foreground document.
axPDFCreactiveX1.CreateObject(ACPDFCREACTIVEX.ObjectTypeConstants.acObject

TypeText, "Text1");
axPDFCreactiveX1.set_ObjectAttribute ("Text1", "Left", 200);
axPDFCreactiveX1.set_ObjectAttribute ("Text1", "Top", 200);
axPDFCreactiveX1.set_ObjectAttribute ("Text1", "Right", 600);
axPDFCreactiveX1.set_ObjectAttribute ("Text1", "Bottom", 400);
axPDFCreactiveX1.set_ObjectAttribute ("Text1", "Text", "Hello");
// refresh the control to make the text object appear
axPDFCreactiveX1.Refresh ();

Methods

Note on return values, note on handling HRESULT, and its possible values.

Return values

This method launches an exception if the object cannot be created. The messages in the

exception are:

E_NOTIMPL The license key that is provided does not enable modifying the document

E_ACCESSDENIED The document security settings do not allow the user to modify the

document

E_FAIL Failed to create the object

Page | 12

Links to Support and Documentation:

If you have any questions or problems with our products, the following resources are

available to you through our web site:

Online Documentation:

https://www.amyuni.com/WebHelp/Developer_Documentation.htm#index.htm

Frequently Asked Questions:

https://www.amyuni.com/forum/viewforum.php?f=18

Technical Notes:

https://www.amyuni.com/en/resources/technicalnotes/

User forum:

https://www.amyuni.com/forum/index.php

Posting questions to our technical support staff:

https://www.amyuni.com/en/support/getsupport/

We also provide some additional tools that can be downloaded free of charge and used with

the PDF Creator product. These tools are available at:

https://www.amyuni.com/en/resources/freetools/

